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Abstract

In this two-part paper, a novel scheme of sensor-based on-line cutting tool flank wear estimation,
called fractal estimation is developed, implemented and evaluated. This paradigm is unique in the
sense that we extract fractal properties of sensor signals. The metric invariants of the sensor signals
called fractal dimensions are related to the instantaneous flank wear using a recurrent neural network
to implement a fractal estimator. The performance of the fractal estimator, evaluated using actual
experimental data, establishes this scheme as a viable flank wear estimation paradigm. This methodology
is general enough to be applied to many classes of estimation problems related to several manufacturing
processes.

We have developed the necessary theoretical formalisms and obtained implementation experiences
through the research on tool wear monitoring in turning. The feature extraction methods used in this
work are vital to the image analysis research and form the foundation for our future work.

In this first part, theoretical foundations leading to the development of the fractal estimator are
presented. New schemes of wavelet transform-based signal separation and fractal dimensions based
feature extraction are described in detail.
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1- INTRODUCTION

1.1 On-line quality control

Today’s manufacturing systems are constantly striving to produce low-cost high-quality products in a
global environment that demands ever-increasing quality, flexibility and production-rates. This is forcing
manufacturing systems towards integration at both sub-systems and systems levels, so that quality and
production issues can be addressed right from the product conception stage.

Even when the quality and production requirements are considered from the design stage; product
and production failures are bound to occur due to the following reasons:

e lack of complete knowledge of the dynamics of the individual manufacturing processes that a
particular manufacturing system is comprised of

e Lack of complete knowledge of the dynamics of the whole system comprising of all concurrent
engineering activities, and uncertainties arising therefrom; and

o impossibility of contriving exact sub-systems satisfying specified functional and operational re-
quirements.

The occurrence of product failures can be substantially alleviated by resorting to appropriate control
schemes. However, current control systems have been predominantly developed to remedy production-
related and machine-specific servo-level problems, but do not cater to quality problems (Hardt, 1993;
Ulsoy and Koren, 1993). As a result, integrated process and product quality control systems are not
well-developed.

Hence, on-line, real-time quality control schemes for manufacturing processes have to be developed
to address quality issues. Given the trend towards globalization of markets, it is imperative that such
schemes be robust enough so that consistent-quality products are realized. In order to develop an
adequate real-time quality control scheme, the manufacturing process needs to be monitored, faults
have to be diagnosed, and a real-time control actions need to be enforced in situ. We show in Figure 1
such a scheme for the turning process. Integrated monitoring, diagnosis and control systems are deemed
essential for successful real-time quality control. But, so far, even the individual tasks and sub-tasks
pertaining to monitoring, diagnosis and control of a manufacturing process have not been thoroughly
researched (Hardt, 1993).

Our overall objective is to initiate a comprehensive discussion of the relevant issues. At the Intelligent
Design and Diagnostics Research Laboratory (IDDRL) at Penn State we have been actively involved
with research in the foundations of Intelligent Integrated Diagnositcs (IID). IID is a novel paradigm to
integrate the process specific concepts of monitoring, diagnosis and control. In this paper, we concentrate
on the monitoring part, specifically with regard to the ubiquitous turning process.

1.2 Scope of monitoring

The turning process, for that matter any manufacturing process, is a dynamical system. From a systems
perspective, the state of the turning process is an abstract entity lying in some abstract space Q;
therefore it needs to be transformed into an ensemble of measurable quantities. Let U be the space
of state variables {u}. Each state variable {u} is possibly multi-dimensional and comprised by Borel-
measurable functions (Stark and Wood, 1994). We need to select a finite number K of state variables
{u1}, {ua},...,{ux} for physical implementation. For instance, we may choose K = 2 for the turning
process where {u;} = {u1(P,t)} is the instantaneous tool wear at time t along three orthogonal directions
at a selected point P lying on the cutting tool surface, and similarly {u2} = {u2(P, t)} is the instantaneous
cutting tool deflection vector. A state variable can be a pointwise function or a bulk function.

The state of any process evolves with time, and fewer than K state variables may be adequate to
achieve a specific engineering objective. Some or all of the elements of the chosen state variables may
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Figure 1: Schematic of the turning process showing the role of monitoring, diagnosis and control systems

be transformed and/or projected into a state vector

T

X = x(t) = 3:2 s - (1)

zdx
The state vectors lie in a dx-dimensional state space M of square integrable functions of time alone. The
process state is also influenced by the process parameters, represented in a process parameter vector

P2
p=| ", )

Pdp

of dimension dp. For instance, we may define p; as the instantaneous cutting speed and p; as the
instantaneous coolant flow rate. The process dynamics may be mathematically represented by a set of
differential/difference equations relating x(t) and p. However, the exact structure of these equations is
in general not known for a real-world process.

Therefore, a model of a particular process dynamics has to be developed from a set of measurements,
given by the measurement vector

)1
=] " ©
Ydy

of dimension dy, lying in the measurement space Y. Most elements of y(t) correspond to some elements
of x(t), or some functions thereof. In general, dx # dy and measurements are contaminated by noise;
however, provided that the noise can be filtered out, we suppose that x(¢) can be completely determined
from knowing y(t). Measurements are usually made at discrete instants t,, of time; therefore we denote
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¥(tn) simply as y(n), where n,1 < n < N, is the time-index. The ensemble y(n),1 < n < N may be
called vector time-series data (TSD).

The performance of the process may be assessed in terms of a scalar functional z(t). This figure of
merit is a measurable function of x(t), and belongs the performance space G.

The state vector x may be partitioned into a response vector xr and a driver vector xp such that
xpr is comprised by those elements of x whose measured values appear as the elements of y. Note that
y completely contains xg, but may have additional elements that do not lie in xz. Monitoring involves
estimating xp from the knowledge of xp. Whenever the measurements of some state variables of interest
are available, such state variables can be directly estimated from the measurements. Monitoring in this
case is termed direct. When the measurements are not direct determinates of state and/or performance
variables (eg., cutting tool wear from the measurements from on-line force, vibration, and acoustic
emission sensors), monitoring is termed indirect.

Most variables of interest in manufacturing processes, especially the turning process, are inaccessible
to direct monitoring. For example, state variables such as product surface characteristics and tool wear
cannot be directly measured. Hence, indirect monitoring using on-line sensors is common. This paper
describes a paradigm for indirect monitoring of tool wear. The issues concerning tool wear monitoring
are described in the following subsection.

1.3 Tool wear monitoring

The prediction and estimation of tool wear in the turning process has been a challenging problem in
machine tool monitoring. Owing to the complex mechanical and thermo-chemical phenomena taking
place in the cutting zones (Trent, 1991), the material on the surfaces adjoining the cutting edge gets
depleted, and the edge becomes blunt. This gradual time-dependent deterioration of cutting tool surface
is called tool wear. There are three major types of tool wear: (i) flank wear, (ii) nose wear and (iii) crater
wear. Flank wear has the most deleterious effect on the product quality (Boothroyd and Knight, 1989).
In particular, the height of the flank wear land h,, has an important bearing on the quality, hence this
height is used to represent flank wear.

_ Due to the inaccessibility of the cutting tool edge for direct on-line measurement, indirect tool wear
estimation schemes are usually resorted to. A generalized schema for tool wear state estimation is
shown in Figure 2(a). It consists of acquiring the on-line sensor signals, and using the information
contained therein for estimating the state of turning dynamics, including cutting tool wear (Kamarthi,
1994). Usually, such schemes are based on—(1) analytical models, (2) observers, or (3) neural networks
(NNs) (Kamarthi, 1994). NN-based on-line tool wear estimation is the latest indirect tool wear moni-
toring method. Sensor fusion techniques coupled with properly designed neural network architectures
have resulted in reasonably successful monitoring systems(Kamarthi, 1994; Elanayar and Shin, 1995).

The procedure for designing NN-based tool wear monitoring systems, as shown in Figure 2(b), usually
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involves the following steps (Kumara et al., 1994; Kamarthi, 1994):

1. Physical simulation of the actual turning process under controlled experimental conditions, and
collection of on-line sensor signals in the form of TSD. The selection and mounting of these sensors
depends upon the specific tool wear estimation strategy. The most commonly used sensors for
on-line monitoring are force sensors, vibration sensors, acoustic emission sensors, and temperature
Sensors.

2. Selection of a proper data acquisition strategy (including the choice of sampling rate, sensor spec-
ifications, etc.) and proper design of experiments so as to adequately cover the state space of the
system under different parameter combinations.

3. Identification of signal contaminants, and design of appropriate signal separation schemes.

4. Selection of feature extraction and data compression methods. The selected features should ideally
represent the invariants of the system dynamics (synonymously, system invariants), and should
constitute a snap-shot of the system dynamics in any sampling interval.

5. Design of an appropriate neural network architecture to relate the features with tool wear, neural
network training, and performance testing. Multilayer neural networks, Kohonen’s feature maps,
and ART networks are normally used.

The NN-based methodology, particularly the signal separation and feature extraction modules, is not
fully developed yet. Furthermore, selecting and extracting features is considered an art (Du et al., 1995).
This is because, most of the present-day signal separation and feature extraction procedures are based
only on the statistical properties of the sensor signals and do not consider the characteristics of the
underlying process dynamics.

But the results of our previous research clearly show that turning dynamics exhibits low-dimensional
chaos (Bukkapatnam et al., 1995). Hence if we can educe the structural information regarding this chaotic
attractor of turning dynamics for signal separation and feature extraction, the resulting monitoring
systems will be more robust compared with those developed using only the statistical properties of the
signals.

Since turning dynamics is chaotic, we employ tools and techniques of chaos theory to educe the
information from sensor signals for signal separation and feature extraction. In specific, we employ fractal
analysis—an agglomeration of mathematical techniques to analyze nonlinear TSD for characterizing the
specific system through experimentation.

Before describing the specifics of the tools and techniques employed, we give a brief overview of
chaos theory and fractal analysis so that the reasoning behind choosing specific tools and techniques
becomes more evident. After this brief overview, we present our methodology and describe specific
techniques employed therein. Our methodology and reported results, we hope, will spur further research
on paradigms based on combining fractal analysis and neural networks for tool wear monitoring and
other indirect monitoring problems pertinent to manufacturing processes.

This paper is organized as follows: In Section 2 the significance of chaos theory is presented, in
Section 3, a brief introduction to fractal analysis is presented; a description of fractal dimensions is
provided in Section 4; and the main motivation for this work is contained in Section 5. Next the
overall methodology is given in Section 6. Finally, the two main procedures employed in this paper—
signal separation and fractal dimension estimation—are described in Sections 7 and 8, respectively.
Implementation details, results and discussion are provided in Part-2 of this paper.

2 CHAOS THEORY

During the past decade, chaos theory has elicited a lot of interest among scientists and researchers. As
a result, its ideas are beginning to be applied to many scientific and engineering problems, especially
where nonlinear models are relevant (Isham, 1993). The term chaos signifies that the evolution of a given
dynamical system is so irregular that the system response is highly sensitive to the initial conditions.
Initially small differences between two system trajectories grow exponentially in time, thus impairing




long-term predictability. In this section, we provide a concise mathematical treatment of some relevant
aspects of chaos theory.

Any system that produces continuous-time response may be modeled by a set of differential equations
of the form

dx(t) _

= = Fx(), ()
F(-) is a generally nonlinear vector field. The solution to (4) results in a trajectory

x(t) = f(x(0),1), (5)

where f : M +— M represents the flow that determines the evolution of x(t) for a particular initial
condition x(0).

If T C M is compact® such that f[T] = T,? then T is said to be invariant under flow f. If volume
elements® in the state space contract as the system evolves, the system is said to be dissipative.* If
A C M is a compact set and U is the largest open set that asymptotically contracts to A C U, then A
is called an attracting set and U is called the basin of attraction of A. An attracting set may be reduced
into certain distinct portions, some of which may not be attracting. All disjoint subsets A;, A, Asg, ...
of A that are attracting are called attractors, while A — (UJ A;) is non-attracting.

In dissipative systems, even though the overall volume of a volume element contract, there can be
some directions in which the linear dimension of the volume element actually expands. However, as
the attractors are usually bounded, the flow then exhibits a horseshoe-type pattern (Wiggins, 1990).
Because of this, trajectories starting from near-by points within an attractor, say A, may get separated
exponentially as the system evolves. This condition is known as the sensitive dependence on initial
condition, and the attractor A, is then called a strange attractor.

A flow f, for a particular initial condition, is said to be chaotic if the trajectories in an attractor
exhibit:

1. sensitive dependence on initial conditions but are bounded,
2. irregular and aperiodic behavior, and

3. continuous broad band spectrum.

If M’s Euclidean dimension d < 3, then graphical techniques can be used to study strange attractors
and understand system characteristics. A commonly used method is to plot the continuous system
trajectories from a set of initial conditions. The resulting plot is called a phase portrait. When d > 3,
the system trajectories can be stroboscopically sampled and plotted corresponding to the state variables
of reduced dimension. This plot is called a Poincaré section plot.

Graphical analysis based on Poincaré section plots can only provide qualitative understanding of the
system dynamics. Quantitative system characterization may be performed using analytical techniques—
based on extracting the metric and topological properties of fractal attractors—comprised by fractal
analysis. The details of fractal analysis are described in the following section.

3 FRACTAL ANALYSIS

The exact dynamics of most realistic systems is not commonly known. Therefore, only the information
contained in sensor signals should be utilized to identify the system and reconstruct its dynamics (Cas-
dagli, 1989). This complex task involves the use of many analytical techniques. A plethora of analytical
techniques bundled together to make inferences about a particular dynamic system from measured TSD
constitute fractal analysis for our purposes. Here, fractal refers to a mathematical entity having no
characteristic length scale, and hence is said to be scale-invariant. Scale-invariance or self-similarity is

1A closed and bounded set is said to be compact.

2This notation means that every element of T gets mapped onto another element of T.

%Volume elements refer to the small finite chunks of state space.

*The concept of dissipative systems emerges from an Eulerian perspective rather than from a Lagrangian one.




commonly encountered in critical phenomena (occurring during phase transitions) as well as in systems
held far from equilibrium (Arnedo et al., 1992).

In essence, fractal analysis involves ‘inverting’ the TSD to deduce system characteristics through
nonlinear model building. The main objectives of fractal analysis can be broadly categorized depending
on the end-purpose as follows:

1. identification of chaos from the system response,

2. establishing the invariants of the system dynamics—for system identification or indirect state
estimation, and

3. chaos modeling—when the end-purpose is to capture and later reproduce the system dynamics.

Our interest in this paper lies only in the first two objectives.

3.1 Identification of chaos

The twin assumptions that the dynamics of the given system (in our context, turning dynamics) is
chaotic and the sensor signals are not highly contaminated® underlie the application of fractal analysis
for our purposes. If these assumptions are not valid, the values of metric invariants calculated using
fractal analysis have little relevance to the characteristics of sensor signals. An experimental validation
of the assumption of the dynamics as being chaotic is therefore essential to the application of fractal
analysis. This establishment of dynamics as being chaotic may be done using a battery of tests involving
statistical and nonlinear dynamics principles.

In our previous work (Bukkapatnam et al., 1995), we established from experiments that turning
dynamics exhibits low dimensional chaos. First, we examined several measured TSD, and the variations
of correlation and-mutual information functions, thus obtaining Poincaré section plots and lag plots.
These plots revealed a definite structure of an attractor. Next, two statistical confirmation tests—the
surrogate data test and a novel quasiperiodicity test—and the Lyapunov exponents test were performed.

3.1.1 Surrogate data test

The finite dimensionality of chaotic processes was exploited in this test to confirm the nonlinearity of the
system dynamics from several measured TSD. The testing procedure involves three steps: (i) generating
many random time-sequences with the same average power spectral density (PSD) as a particular
TSD; (ii) constructing a nonlinear predictor model® from the surrogate data using lag-coordinates; and
(iii) comparing the prediction errors of the surrogate-data-based models with the particular TSD using
a non-parametric hypothesis testing procedure. If the prediction errors of the surrogate data-sets are
considerably larger than those of the particular measured TSD, then the measured TSD is nonlinear
and possibly chaotic.

Non-parametric tests—the Kolmogorov-Smironov test and a z-test based on Mann-Whitney rank-
sum statistic (Kennel and Isabelle, 1992)—were employed for hypothesis testing. The prediction errors
of all TSD examined were considerably lower than those for the corresponding surrogate data-sets, thus
establishing the fact that turning dynamics is indeed nonlinear and possibly chaotic.”

3.1.2 Quasiperiodicity test

This test relies on the representability of quasiperiodic and chaotic TSD. A quasiperiodic TSD may
be represented as a sum of a set of finite periodic sequences. If a given TSD is chaotic, a periodic
representation will not be sufficient. Based on this idea, the testing procedure involves representing
the given TSD as a sum of finite periodic sequences, and comparing the resulting errors against those
obtained by fitting a neural network-based predictor for the same TSD. If the difference in the prediction
errors are statistically significant, then the given TSD is not quasiperiodic and very likely to be chaotic.

®Contamination refers to both measurement noise and undesirable dynamic contamination.
8 A local linear predictor model may be adequate for many instances.

"We used force and vibration sensor data for our tests. Acoustic emission data was not used because it was not considered
reliable. :




Thie application of this test statistically confirmed that the measured TSD, hence turning dynamics, are
chaotlc

3.1.3 Lyapunov exponents test

Finally, the Lyapunov exponents test was performed to establish the presence of low-dimensional chaos
in turning dynamics. Lyapunov exponents are the best quantifiers of chaos in a dynamical system. They
signify the divergence rate, along a particular direction, of small perturbations to an orbit. A system
represented by a d dimensional state vector is dissipative if the sum of the d Lyapunov exponents is less
than zero and is chaotic when at least one of the Lyapunov exponents is positive. The presence of positive
Lyapunov exponents is considered as a reliable confirmatory test for the presence of chaos (Abarbanel
et al., 1993).

Smce the state vector x is not readily available, we used several measured TSD for the test. First
a particular combination of TSD was used to form a dg dimensional vector TSD, where dg is called
the embedding dimension. Since the TSD is contaminated by noise, the dominant Lyapunov exponent
computed for the TSD will be higher than its actual value. Therefore, the TSD has to be separated from
noise. This de-noising was performed using wavelet transforms. The dominant Lyapunov exponents of
all TSD were found to be < 2.0 over a range of embedding dimensions 1 < dg < 5; in particular, they
hovered between 1.89 and 2.00 when dg = 4, the optimal embedding dimension. It followed therefrom
that turning dynamics exhibits low-dimensional chaos. Having established the low-dimensionality of the
attractor of the dynamical system corresponding to several measured TSD and hence turning dynamics,
we proceeded to extract the system invariants.

3.2 Extraction of system invariants

In order to characterize turning dynamics, the system represented by the sensor signals can be identified
by several invariants. These system invariants are evaluated at different instants in time to act as the
signal features for estlmatmg the driver.

The invariants in a nonlinear system may be classified into two categorles—metrlc and topological
invariants. Metric invariants are the parameters like the various fractal dimensions and Lyapunov
exponents that quantify the system dynamics. Topological invariants are integer or rational values that
express the relationship (linkage) between simple periodic orbits and the twisting of trajectories near
an unstable periodic orbit. Metric invariants and topological invariants together provide a reliable set
of invariants for system identification, classification and state estimation. In this work, we use metric
invariants, called fractal dimensions, described in the following section.

4 FRACTAL DIMENSIONS

The most widely used metric invariants are the fractal dimensions which quantify self-similarity or
scale-invariance in the state-space (Takayasu, 1990). Fractal dimensions are measures of the space-
filling ability of a solution trajectory in a given attractor. They also yield the number of active degrees
of freedom (equivalently, the dimension of the state-space, and hence the order of the system) in the
underlying dynamical system by virtue of Taken’s embedding theorem (Tsonis, 1992).

Fractal dimensions are computed nowadays from a multifractal viewpoint that involves the definition
of generalized fractal dimensions Dy, where ¢ € [0,00) is a labeling index. These generalized fractal
dimensions constitute a fractal dimension spectrum that has been found useful in extracting the scaling
properties of fractals (Arnedo et al., 1992).

Mathematically, a fractal dlmensmn D reveals the proportional relationship between a bulk measure
V (such as mass) and a characteristic length measure L of a fractal as per

Vo LD, (6)

More generally, let us consider a fractal T C M where M is a vector space, and let X € M denote a




point therein.® Let there be a density function p(k) defined over M. Consider then the bulk function
defined in terms of a density function p(X) as the integral

u(x) = /B P @

Here, B.(X) is an open ball of size € about an arbitrary point X, and X’ is a dummy variable. Then, the
pointwise fractal dimension a(X) is given by

o(%) = lin %(ei)' (8)

Usually, a(x) has to be averaged in some sense over I' C M to obtain a global fractal dimension.
If we construct a discrete lattice of points X;,X2, ..., to cover the fractal ' upto resolution ¢, then
the global generalized fractal dimension of I’ is given by

.1 log(3; pU(%;))
D, = }}_r_% g—1 Io;(c) = ®

The spectrum of fractal dimensions is derived from (9) by substituting different values of ¢ € [0, 00).
In particular, Dy corresponds to the capacity (box-counting) dimension, D; to information dimension,
and D, to correlation dimension (Takayasu, 1990). As each of these quantities has been successfully
used as a system invariant in diverse applications, we suppose that Dy, D, and D, will reasonably
identify turning dynamics. This is justified because Dy characterizes the geometry of the attractors, D,
characterizes the time spent by a solution trajectory in different attractors, and D, characterizes the
spatial distribution of attractors (Isham, 1993).

5 FRACTAL DIMENSIONS AND TOOL WEAR

We have thus far established that turning dynamics is chaotic and have provided a brief rigorous de-
scription of the analytical techniques employed in our paradigm, including the fractal dimensions. Fur-
thermore, we have also described fractal dimensions as system invariants for characterizing turning
dynamics.

However, in order to provide a clear motivation for our work, we need to show that fractal dimensions
of the measured TSD adequately characterize the variations in turning dynamics and, specifically, that
they are sensitive to tool wear. Therefore, first we show from the literature that fractal dimensions of any
surface-topography are sensitive to wear. Next, we argue that—since the flank wear land topography
affects the measured TSD—the extent and the variation of the flank wear (alternately, flank wear
dynamics) will be captured by the fractal dimensions of the sensor signals.

Fractal properties of machined surfaces have been found to be sensitive to tool wear (Zhou et al.,
1995). In particular, the fractal dimensions of the machined surfaces have been found to depend on both
bearing area and surface roughness. Typical variation of capacity dimension of a shoe surface, when steel
roller was moving on the shoe, is shown in Figure 3. The plot is adapted from Zhou et al., (1995). From
this figure, it is evident that a definite relationship exists between the capacity dimension of a surface and
the extent of wear thereon. Based on this observation, relationships connecting fractal dimensions of the
tool wear land and the extent of tool wear may be captured in a fractal-geometry-based wear prediction
model, derived from combining the fractal model of contact between rough surfaces (Majumdar and
Bhushan, 1991) and the adhesive wear theory.

In the turning process, as the tool wear progresses the physical mechanisms involved therein (such as
the formation of multiple cutting edges) modify turning dynamics. This variation of turning dynamics,
in turn, alters the force and the vibration patterns associated with the turning process. Hence, the
variation of fractal dimensions of the worn surfaces should, in some manner, alter the fractal properties
of force and the vibration sensor signals. This is evident from the Artificial Insymmetrized Patterns

8For instance, M may correspond to the state space M and X to a realization x(t) during the evolution of the state vector
x within the attractor, which is represented by T.
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Figure 4: AIP pattern of main vibration sensor signals—collected at speed = 160 feet/min and feed =
0.0136 inch/rev—capturing the variations in the sensor signals with wear during turning: (a) corresponds
to no tool wear (h,, = 0.0000 inch) and (b) corresponds to complete tool wear (h,, = 0.01830 inch)

(AIPs) (Handley et al., 1993) shown in Figure 4. AIPs were plotted for vibration sensor data collected
at a speed of 160 feet/min and feed of 0.0136 inch/rev. AIP zoomed in on the variations in the density
distribution with respect to the tool wear. In contrast, Poincaré section plots showed little variation
with tool wear (Bukkapatnam et al., 1995).

To summarize the foregoing, the overall interaction may be classified into (i) the effects of tool wear—
in particular the fractal properties thereof-—on turning dynamics and (ii) the effect of the resulting
variations of turning dynamics on the force and vibration sensor signals.

The cutting tool flank wear has the following influences on turning dynamics: It changes (i) tool-
workpiece contact characteristics, which in turn affect contact friction; (ii) the shear angle, which directly
varies the material removal dynamics; and (iii) cutting edge characteristics due to the formation of
multiple cutting edges, which can drastically affect the patterns underlying the force and sensor signals.
All these variations alter the thermomechanics of the cutting process.

As a result, the amplitudes and the dominant frequencies of the forces along different component
directions vary. Furthermore, the tool wear dynamics may introduce a force component, which is de-
pendent upon the higher spatio-temporal derivatives of the flank wear. The interactions between the
cutting force and the machine tool structure result in a variation of the cutting tool vibrations. Thus,
the fractal characteristics of the force and the vibration sensor signals possess information sensitive to
the tool wear and its higher order derivatives.

6 RESEARCH METHODOLOGY

The objective of our effort is to demonstrate the performance of the generalized fractal dimensions
as the signal features for NN-based tool wear estimation in turning. As mentioned in section 1, the
methodology consists of

1. performing experiments and obtaining the measured TSD,

2. filtering signal contaminations using wavelet transforms,

3. computation of fractal dimensions, thereby arriving at features to represent a given TSD, and
4

. training a recurrent neural network with the extracted features. This trained neural network,
when fed with the features extracted from fractal dimensions of filtered TSD, outputs tool wear
estimates.

In this overall schema, the procedures of signal separation and feature extraction are crucial, and
involve certain theoretical issues. Hence a detailed description of these two procedures is provided in

12

. b L .. .




the following two sections. Since the design of recurrent neural network is more of an implementation
issue, description of neural network design is provided in Part-2 of this paper.

7 SIGNAL SEPARATION

Any TSD obtained from the on-line sensors is laden with noise, which has to be properly filtered out.
If the TSD were linear, Fourier analysis would have been adequate. But a nonlinear measured TSD
can be contaminated by measurement noise and/or dynamical noise (extraneous dynamics). Therefore,
separation of contamination from the measured signal becomes very difficult (Schouten et al., 1994).

We used the wavelet transform for signal separation. Our signal separation methodology employed
the wavelet representation of a given signal and a soft-threshold function defined from the abstract
de-noising model (Donoho, 1992).

Wavelets are functions whose translations and dilations can be used to represent measurable square-
integrable functions. These functions have good time and frequency domain localizations. Let F(¢) €
L3(R), the space of d-dimensional square integrable functions defined over the real line R. Then,

[>]

Ft)= Y agpdok®+3 D bk, (10)

k=-oco j:O k=-00

where, ¢j,k and tﬁ"k are called the scaling and the wavelet functions, respectively; j is the dyadic scale
index and determines the central frequency and the frequency range, whereas k is the translation index
and determines the time-domain resolution. At a particular scale j, {2/2¢(2/t —k)} and {2}/24(2t —k)},
—00 < k < 0o separately form orthonormal bases in the space of square integrable functions Ly(R). The
d-dimensional coefficient vectors a, k and bj,k are obtained from the projection operations

Gy =< F oy >= f;oo F(t)é k(t)at, a
bk =< Fr ¥ >= [, F(O)v; ().

Thus, a given function F(t) may be resolved in time-frequency domain as shown in Figure 5. The
figure shows that for a particular frequency window (bin), the time-windows are of same width, and
the number of time-windows are proportional to the center frequency of a particular frequency window.
Furthermore, we see that the width of frequency windows increases logarithmically.

As for a finite length TSD, an empirical wavelet representation of the form

®(n) = S(F(tn)) (12)
may be obtained from
J o
Ft) = ao,kd’o,k(t) + Z Z bj,k'/’j,k(t)' » (13)
j=0 k=0

Here, S(-) represents the sampling operation such that the maximum resolution levels correspond to an
orthogonally projected subspace V) € L4(R) of scale index j = J.

However, in general, all measured TSDs y(n) are contaminated and hence are equivalently stochastic.
In such cases, (10) holds with probability 1, as long as the given y(n) is a finite energy sequence (Goldberg,
1993). Furthermore, the coefficients g k and bj,k correspond to the transform vector codebooks.

But, in our case, we need to project y into the space of the unknown function ®. This relationship
in the wavelet domain® may be expressed as follows:

Wj'ky =wiks + Ej;'kv, (14)

®Wavelet domain refers to the space of the wavelet coefficients.
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Figure 5: Resolution of a given function in time-frequency domain by wavelet transform

where Wi k() denotes a vector corresponding to a particular coefficient of wavelet transform of y, v

is an independent and 1dent1cally distributed standard Gaussian vector and E" is a diagonal matrix
whose diagonal elements e;’s correspond to the noise levels (Donoho, 1992). This relationship holds
reasonably well for many measured TSD as long as the desired signal is low-dimensional compared with
any contaminant, and the TSD is reasonably long. In such cases, for each component y; of y,19, and for
every scale  a soft threshold

A =d \/log;N (15)

may be computed, and then applied on every wavelet transform coefficient thereof so that the resulting
thresholded coefficients may be expressed as

Wik = sgn(niky ) (Wiky| - o)), 1< < dy, (16)
where sgn(-) denotes the signum function. In (14), (15) and (16) the only unknown independent quan-

tities are eg Based on (Johnstone and Silverman, 1995), we may approximate ¢ to be the standard
deviation of the coefficients at scale j. This is a valid approximation because (i) the measured TSD is
reasonably stationary, (ii) the covariance matrix reveals a reasonable short-term periodicity (as is evident
from the Poincaré section plots drawn in (Bukkapatnam et al., 1995)). These conditions incidentally
are the requirements for the approximation to hold. This soft thresholding procedure is applied to every
yj(n) to carry out signal separation, and the filtered signal used for feature extraction.

10Note that the measurement vector y is a vector TSD, whose components—i.e, y;’s—are scalar TSD.
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8 FEATURE EXTRACTION

The filtered signal is still uncompressed and the size of the TSD file much too large. Such huge uncom-
pressed data is unwieldy for training a neural network. So, as proposed earlier, the generalized fractal
dimensions (Do, Dy, and D;) may be used as signal features. Our procedure for estimating the fractal
dimensions is based on the algorithm developed by Liebovitch and Toth (1989). The procedure for
computing the fractal dimensions is as follows:

For a given vector TSD, the data points corresponding to each scalar TSD are scaled to lie between
0 and 1. Then, the data points are shifted and rescaled to lie between 0 and a large value 2™, typically
m = 32 will be sufficient. Precisely m values of ¢ are chosen. For each chosen value of ¢,

1. the number of balls N(¢) required to cover the fractal drawn in the space of the given vector TSD,
and

2. the frequency p;(¢) of points in each of these balls

are determined, from which bulk V' can be obtained (Tsonis, 1992). The generalized dimensions may be
deduced from the slope of the linear portion of log V, versus log ¢ graph, representatives of which are
shown in Figure 9 of Part-2 of this paper.

However, the fractal dimensions thus obtained are sensitive to the dimension dg of the vector TSD,
which is synonymous with the embedding dimension. The exact fractal dimensions in such situations
can be found by stabilizing their value with increasing embedding dimension. This can be achieved -
either by including an additional lag coordinate, or an independent TSD (Tsonis, 1992). In our work,
we increased the dimension of the vector TSD by including the data from several sensors till the values
of fractal dimensions stabilized.

One important issue here is that if we do not have enough number of points (i.e., the vector TSD is
not sufficiently long), there is a possibility of wandering intercepts (Cutler, 1991) which will render the
estimates of fractal dimensions inaccurate. However, the more the number of points, the larger is the
computational effort for calculating p;(¢). We deem the latter criterion of computational speed as the
more important one, because our results showed (see Part-2 of this paper) that the p;(¢) versus ¢ plot
was reasonably linear over > 3 decades. Thus, we were justified in using Liebovitch and Toth algorithm.

Fractal dimensions computed thus may be used as features from which exemplar patterns to train a
recurrent neural network may be prepared. The neural network trained using these exemplar patterns
functions as a fractal estimator. Our implementation details and results are presented in the next part
of the paper.

9 SUMMARY

This paper addressed most of the theoretical issues, that led to the development of a generalized method-
ology of fractal estimation of flank wear in the turning process. The major contributions of this paper are
the development of novel paradigms for signal separation and feature extraction. The implementation
issues are addressed in Part-2 of this paper.
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List of symbols

SO WS >
O

Q,
ty

Attracting set

Attractor, j = 1,2,...

Wavelet transform coefficients

Open ball of size ¢ about x

Fractal dimension

Generalized fractal dimensions ¢ € [0, 00)
Dimension of F defined in Section 7
Embedding dimension

Process parameter vector dimension
State space dimension
Measurement space dimension

Noise level matrix

Noise level for jt* TSD

Vector field defined in Section 2

A function defined in Ly(R)

Flow operator defined in Section 2
Performance space

Maximum resolution

Dummy time index

Dilation (dyadic scale) index

Number of state variables of interest
Translation index ’
Length measure

State space

An arbitrary space containing the fractal T'
Binary power index defined in Section 8
Length of TSD

Number of ball (boxes) to cover a given fractal
Time index

A point on tool surface

Process parameter vector

Component of p

Index of generalized fractal dimensions
Real line

Sampling operation transformation

Abstract process state

Sign function

A compact set defined in Section 2

Time variable

Time interval between successive tool wear estimates
Sampling time of the measured TSD

Moving time window for thresholds and fractal dimensions
Space of state variables

State variable

Bulk measure

Vector space of Ly(R) corresponding to resolution J
Independent and identically distributed random variable

Wavelet transform

Tool wear (state) vector
State vector

A vector lying in M space
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S0 CG

Driver vector

Response vector
Component of state vector
Measurement space
Measurement vector
Measurement variable
Space of integers
Performance variable
Pointwise fractal dimension
Fractal

Size of an open ball

Bulk parameter

Basin of attraction

Sample space of s

Unknown function onto which y(k) is projected
Scaling function

Wavelet function

Density function
Measurement contamination
Dynamic contamination
Soft threshold

Time-series vector

Denoised vector time-series vector




